
SPARTI
Scalable RDF Data Management Using
Query-Centric Semantic Partitioning

Amgad Madkour (Purdue)
Walid G. Aref (Purdue)
Ahmed M. Aly (Google)

Motivation

• The astronomical growth of RDF data raises the
need for scalable RDF management strategies

• Efficient RDF data partitioning can significantly
improve the query performance over cloud
platforms

• Cloud platforms provide shared memory,
storage, and advanced data processing
components that help manage web-scale RDF

Problem Definition

• Vertical Partitioning (VP) is a scalable
partitioning schema that can be used
in cloud-based systems

• However, not all entries of a VP are
part of the final result

• The non-matching entries cause
computation and communication
overhead

SELECT ?x ?y WHERE {
?x :mention :Mary .
?x :tweet ?y . }

mention

SUB OBJ

:John :T1

:Mike :T2

Mike :T3

:Alex :T4

tweet

SUB OBJ

:John :Mary

:John :Mike

:Alex :Mary

:Sally :Mike

:Mary :John

Original Data

Reductions

Join(mention sub , tweet sub)

Join(tweet sub , mention sub)

SUB OBJ

:John :Mary

:John :Mike

:Alex :Mary

SUB OBJ

:John :T1

:Alex :T4

Vertical Partitioning Model
Vertical Partitioning [Abadi et al. – VLDB 2009]

• Create property-bound tables consisting of two columns

• Advantages
­ Inspects the corresponding VP tables only
­ Avoids the tuple-header reading overhead of row-stores when stored
in a column store

• Drawbacks
­ Some partitions can account for a large portion of the entire graph

­ (i.e. Massive I/O)

Subject
:John
:John
:John
:Mike
:Mike
:Alex
:Alex

Property
mention
mention
tweet
tweet
tweet
mention
tweet

Object
:Mary
:Mike
:T1
:T2
:T3
:Mary
:T4

Triples Table

mention

Subject Object
:John :Mary
:Alex :Mary
:John :Mike

tweet

Subject Object
:John :T1
:Mike :T2
:Mike :T3
:Alex :T4

Proposal
Overview

• Three Phases

1. Property-based Partitioning
2. Partition Reduction
3. Query Processing

SPA

Proposal
High-Level Workflow

RDF Dataset

Partition based on “property”

Query Workload Partition Reduction

Query Processing

Input

Output
Input

(Incremental)

SPARTI
SemVP Tables

…
Subject tweet mentio

n
META

… … …

…
Subject tweet mentio

n
META

… … …

…
Subject tweet mentio

n
META

… … …

Row-Level Semantics

Subject Object

… …

Proposal
Property-Based Partitioning

• SemVP - A relational partitioning schema that extends VP’s
­ Partition RDF datasets based on property
­ Represent row-level semantics for every triple via semantic filters

• Create Bloom filters for every SemVP (subject and object)
­ Used later to compute reduced row-sets for specific query join patterns

Proposal
Partition Reduction

• Identify related properties from the query workload for every
partition

• Identify join patterns in the query workload

• Compute a reduction using Bloom join between related
properties based on the join patterns

• Store the result of the reduction as semantic filters

Proposal
Query Processing

• Identify the properties and join patterns in queries

• Match every property and query join pattern with a SemVP
partition and a semantic filter, respectively

• In case a match is found, a semantic filter (representing the
reduced set of rows) is read to answer a query instead of
reading the entire partition for a property.

Challenges

• How to represent row-level semantics (semantic filters)

• How to efficiently compute reductions ?

• How to select semantic filters that minimize network and disk IO ?

• How to evolve based on the query-workload

Semantic Vertical Partitioning (SemVP)

• A relational partitioning schema that extends vertical partitioning
with row-level semantics

• Consists of 2 columns: Subject, Object

• A Semantic Data Layer (SDATA) structure that stores triple semantics

SDATA

[1]

[1,2]

[1]

Key Count

mention_S_JN_tweet_S 3

mention_O_JN_tweet_S 1

SEMANTIC DATA LAYER

SemVP

Statistics
Bloom

 Filters

Key ID

mention_S_JN_tweet_S 1

mention_O_JN_tweet_S 2
Sem

antic Filters

Semantic Vertical Partitioning (SemVP)
Example

Dictionary

Key Filter

mention_S [B1]

mention_O [B2]

Subject Object

:John :Mary

:John :Mike

:Alex :Mary

Figure: SemVP representing the mention property

Semantic Vertical Partitioning (SemVP)
Semantic Data Layer

• Semantic Filters
­Used for determining triples that can are read to answer a specific query
join pattern

• Statistics
­Maintains statistics about the semantic filters

• Bloom Filters
­Used for computing the semantic filters

Property Reduction
Example

SUB OBJ

:John :Mary

:Alex :Mary

:John :Mike

SUB OBJ

:John :T1

:Mike :T2

:Mike :T3

:Alex :T4

:John,
:Alex :John,

:Mike,
:Alex

SELECT ?x ?y WHERE {
?x :mention :John .
?x :tweet ?y . }

x=[:mention_S, :tweet_S]

SUB OBJ

:John :Mary

:Alex :Mary

:John :Mike
BF: tweet_S

BF: mention_S

SUB OBJ

:John :T1

:Alex :T4

BGP
Join

:mention :tweet
SDATA

[2]

[2]

SDATA

[1]

[1]

[1]

Original Partitions

SF (ID: 2) : tweet_S_JN_mention_S

SF (ID: 1) : mention_S_JN_tweet_S

Partition Reduction
Example: Property Relatedness

SELECT ?X ?Y ?Z
WHERE
{

?X type GraduateStudent .
?Z phdFrom ?Y .
?X mscFrom ?Y .

}

type = [mscFrom]
phdFrom = [mscFrom]
mscFrom = [type, phdFrom]

• Properties are considered related if
they appear in the same query join
pattern

• SPARTI utilizes the co-occurrence to
determine which semantic filters
should be computed

Evolution

• Evolution relates to when semantic filters are:
­Created – To reduce partitions of newly observed join patterns
­Deleted – To reduce disk space

• The cost of computing additional semantic filters can be inferred
from the query-workload and the SemVP statistics

Cost Model

• Each SemVP partition maybe associated with hundreds of semantic filters

• A cost-model is needed in order to determine the importance of a semantic
filter

!"#$#"% = α (+ ß + +∞ (.)

• Where
­ S : Support (ie, frequency) of a join pattern within a query-workload
­ R : The partition size
­ P : Number of properties that the semantic filter includes
­ α + ß + ∞ = 1

Experimental Setup
• Computational Framework

­ Apache Spark

• Storage
­ HDFS

• Datasets
­ WatDiv Benchmark + Stress Workload
­ 100 Million, 1 Billion

­ YAGO
­ 200 M

• Systems
­ S2RDF
­ SPARTI
­ Vertical Partitioning

Results
Number of Rows

1.E-02

1.E+00

1.E+02

1.E+04

1.E+06

WatDiv (100M) WatDiv (1000M) YAGO2s

N
um

. R
ow

s
(C

ou
nt

)

Datasets

Original file VP SPARTI S2RDF

Results
Number of Files

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

WatDiv (100M) WatDiv (1000M) YAGO2s

N
um

. F
ile

s
(C

ou
nt

)

Datasets

VP SPARTI S2RDF

Results
HDFS Size

1.E+00

1.E+01

1.E+02

1.E+03

WatDiv (100M) WatDiv (1000M) YAGO2s

St
or

ag
e

Si
ze

 (G
B)

Dataset

VP SPARTI S2RDF

Results
Load Time

0.E+00

5.E+03

1.E+04

2.E+04

2.E+04

3.E+04

3.E+04

WatDiv(100M) WatDiv (1000M) YAGO2s

Lo
ad

 T
im

e
(S

ec
on

ds
)

Datasets

VP SPARTI S2RDF

0%

20%

40%

60%

80%

100%

WatDiv(100M) WatDiv(1000M) YAGO2s

Pe
rc

en
ta

ge
 (T

im
e)

Datasets

Property-Based Partitioning Partition Reduction

Results
Execution Time – WatDiv 1B

1.E+02

1.E+03

1.E+04

1.E+05

C1 C2 C3 F1 F2 F3 F4 F5 L1 L2 L3 L4 L5 S1 S2 S3 S4 S5 S6 S7

Ex
ec

. T
im

e
(m

ill
ise

co
nd

s)

WatDiv Queries - Snowflake (F) , Complex (C) , Linear (L), Star (S)

SPARTI S2RDF VP

Results
Execution Time - YAGO

2.E+02

8.E+02

3.E+03

1.E+04

5.E+04

2.E+05

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

Ex
ec

. T
im

e
(m

ill
ise

co
nd

s)

YAGO Queries

SPARTI S2RDF VP

Results
Execution – WatDiv Stress Testing Workload

0

500

1000

1500

2000

2500

3000

P1 P2 P3 P4 P5

Ex
ec

. T
im

e
(m

ill
ise

co
nd

s)

WatDiv Stress-Testing Workload Snapshots (P1-P5)

Snowflake Linear Star

Conclusion

• We presented SPARTI, a scalable RDF data management system that utilizes a
relational scheme and provides row- level semantics for RDF data

• The row level semantics, represented as semantic filters, provide SPARTI with a
mechanism to read a reduced set of rows when answering specific query join-
patterns

• The cost-model for managing semantic filters prioritizes the creation of the
important semantic filters to compute.

• The experimental study that compares SPARTI with the state-of-the-art Spark-
based RDF system demonstrates that SPARTI achieves robust performance over
synthetic and real datasets

Questions ?

BACKUP SLIDES

