SPARTI

Scalable RDF Data Management Using
Query-Centric Semantic Partitioning

Amgad Madkour (Purdue)

Walid G. Aref (Purdue) PURDUE

Ahmed M. Aly (Google)

Motivation

The astronomical growth of RDF data raises the
need for scalable RDF management strategies

Efficient RDF data partitioning can significantly
improve the query performance over cloud
platforms

Cloud platforms provide shared memory,
storage, and advanced data processing

components that help manage web-scale RDF @thk Spbr

Problem Definition

Vertical Partitioning (VP) is a
partitioning schema that can be used
in cloud-based systems

However, of a VP are
part of the

The non-matching entries cause
computation and communication

SELECT ?x ?y WHERE {

?x :mention :Mary .
?x :tweet 7y .}
Join(mention ***, tweet **) : mention tweet
SUB OBJ il SuB OBJ SUB OBJ
I
:John :Mary ! | :John :Mary :John :T1
) I
:John Mike |1] dohn Mike :Mike T2
. . I
Alex :Mary |11 Alex Mary Mike T3
Join(tweet *** , mention *°) :
| Sally :Mike :Alex :T4
SUB (0]:) :
1| :Mary :John
:John :T1 |
I
:Alex :T4 : Original Data
|
I

Reductions

Vertical Partitioning Model
Vertical Partitioning [Abadi et al. — VLDB 2009]

Triples Table

* Create property-bound tables consisting of two columns

* Advantages
" Inspects the corresponding VP tables only

" Avoids the tuple-header reading overhead of row-stores when stored
in a column store

mention tweet
* Drawbacks

* Some partitions can account for a large portion of the entire graph
* (i.e. Massive |/O)

Proposal
Overview

Property-based Partitioning
Partition Reduction

Query Processing

’ Proposal

High-Level Workflow

RDF Dataset

Partition based on “property”

-~

Input
(Incremental)

Query Workload

SPARTI
"

Partition Reduction

Output

Query Processing

Input

]
)

SemVP Tables

/

Proposal
Property-Based Partitioning

- A relational partitioning schema that extends VP’s
Partition RDF datasets based on property

Represent row-level semantics for every triple via

Create for every SemVP (subject and object)

Used later to compute reduced row-sets for specific query join patterns

Proposal
Partition Reduction

|dentify related properties from the query workload for every
partition

|dentify join patterns in the query workload

Compute a reduction using Bloom join between related
properties based on the join patterns

Store the result of the reduction as semantic filters

Proposal
Query Processing

|dentify the and in queries

every property and query join pattern with a
partition and o , respectively

In case a match is found, a (representing the
reduced set of rows) is read to answer a query
reading the for a property.

Challenges

How to represent row-level semantics ()
How to efficiently compute e
How to that minimize network and disk 1O ¢

How to based on the query-workload

Semantic Vertical Partitioning (SemVP)

A relational partitioning schema that extends vertical partitioning
with row-level semantics

Consists of : Subject, Object

A structure that stores triple semantics

Semantic Vertical Partitioning (SemVP)
Example

SEMANTIC DATA LAYER
Dictionary g‘(’
Key ID g
. . mention_S_JN_tweet_ S 1 :.,
Subject Object m—' =
mention_O_JN_tweet S 2 g

:John :Mary [1]
:John :Mike [1,2] Key Count %
0
| mention_S_JN_tweet S 3 i
:Alex :Mary —T [1] =
N y) mention_O_JN_tweet_S 1
SemVP

Key Filter g
mention_$S [B1] ?n
mention_O [B2] ‘g

Figure: SemVP representing the mention property

Semantic Vertical Partitioning (SemVP)
Semantic Data Layer

Used for determining triples that can are read to answer a specific query
join pattern

Maintains statistics about the semantic filters

Used for computing the semantic filters

Property Reduction

Example

?x tweet ?y

SELECT ?x ?7y WHERE {
?Xx :mention :John .

x=[:mention_S, :tweet_3S]

:John :Mary || :John

:T1

:Alex :Mary :Alex

:T4

:John :Mike

Original Partitions
:mention «— > :tweet

SUB OBJ

:T1

SDATA

(2]

:T2

T3

BF

: mention_S

SF (ID:

1):

mention_S_JN_ tweet S

T4

(2]

BF: tweet_S

SF (ID:

2): tweet_S_JN_mention_S

Partition Reduction
Example: Property Relatedness

Properties are considered
they appear in the

SPARTI vtilizes the

determine which semantic filters
should be computed

if

fo

SELECT
WHERE

{

X ?Y ?Z
type GraduateStudent .
phdFrom Y .

mscFrom ?Y .

type = [mscFrom]
phdFrom = [mscFrom]
mscFrom = [type, phdFrom]

Evolution

Evolution relates to when semantic filters are:
Created — To reduce partitions of newly observed join patterns

Deleted — To reduce disk space

The cost of computing additional semantic filters can be inferred
from the and the

Cost Model

Each partition maybe associated with
A is needed in order to determine the of a semantic
filter

Utility = a(S) + 3 (R) + oo (P)

Where

S : Support (ie, frequency) of a join pattern within a query-workload
R : The partition size

P : Number of properties that the semantic filter includes

a+ R +o00=1

Experimental Setup

Computational Framework
Apache Spark

Storage
HDFS

Datasets

WatDiv Benchmark + Stress Workload
100 Million, 1 Billion

YAGO
200 M

Systems
S2RDF
SPARTI

Vertical Partitioning

Results
Number of Rows

1.E+06

f)

S 1.E+04

(Co

$ 1.E+02

Ro

E 1.E4+00

1.E-02

[Original file ®@VP

SPARTI BS2RDF

DN

WatDiv (100M)

WatDiv (1000M)
Datasets

YAGO2s

Results
Number of Files

1.E+04

BVP ESPARTI BS2RDF

f)

S 1.E+03
(o)

(C

¢ 1.E+02

%@ﬁ:éﬁg

F

£ 1E+01

N

DN

1.E+00
WatDiv (100M) WatDiv (1000M) YA
Datasets

Q
O

Results
HDES Size

1.E+03
1.E+02

1.E+01

Storage Size (GB)

1.E+00

7

@ VP

_

SPARTI BS2RDF

WatDiv (100M)

WatDiv (1000M)
Dataset

YAGO2s

Results
Load Time

3.E+04

w
m
+
(@
N

2.E+04
2.E+04
1.E+04

ime (Seconds)

Load T

5.E+03
0.E+00

OVP ®&SPARTI ©S2RDF

WatDiv(100M) WatDiv (1000M)

Datasets

YAGO?2s

Percentage (Time)

& Property-Based Partitioning
100%

80%
60%
40%
20%

0%

O Partition Reduction

WatDiv(100M)

WatDiv(1000M)
Datasets

YAGO2s

Results

Execution Time — WatDiv 1B

z SPART|I & S2RDF @ VP

1.E+05
1.E+04
+

(spuodasi||iw) awl] *29X3J

WatDiv Queries - Snowflake (F) , Complex (C), Linear (L), Star (S)

Results
Execution Time - YAGO

- 2.E+05
=
§ 5 E+04 SPARTI B S2RDF BVP
)
0] E =
£ A8 E 7
= % = me ﬁ
J ﬁ ‘B - g
e g B
|_|>j 2 E+O2 ﬁ ﬁ:;:: EEE WE f"j:::1= l: ﬁ
Q3 Q5 Q6 Q7 Q8 Q9 Q14 QI

YAGO Queries

Results

Execution — WatDiv Stress Testing Workload

—+—Snowflaoke —Linear -@=Star

\ -

—— —.--________.

P1 P2 P3 P4
WatDiv Stress-Testing Workload Snapshots (P1-P5)

P5

Conclusion

We presented SPARTI, a RDF data management system that utilizes o
and provides for RDF data
The row level semantics, represented as , provide SPARTI with a

mechanism to read a reduced set of rows when answering specific

The for managing semantic filters the creation of the
important semantic filters to compute.

The that compares SPARTI with the state-of-the-art Spark-
based RDF system demonstrates that SPARTI achieves over
synthetic and real datasets

Questions ?

BACKUP SLIDES

