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Motivation

• The astronomical growth of RDF data raises the 
need for scalable RDF management strategies

• Efficient RDF data partitioning can significantly 
improve the query performance over cloud 
platforms

• Cloud platforms provide shared memory, 
storage, and advanced data processing 
components that help manage web-scale RDF



Problem Definition

• Vertical Partitioning (VP) is a scalable
partitioning schema that can be used 
in cloud-based systems

• However, not all entries of a VP are 
part of the final result

• The non-matching entries cause 
computation and communication 
overhead

SELECT ?x ?y  WHERE {
?x :mention  :Mary .    
?x :tweet    ?y    . }

mention

SUB OBJ

:John :T1

:Mike :T2

Mike :T3

:Alex :T4

tweet

SUB OBJ

:John :Mary

:John :Mike

:Alex :Mary

:Sally :Mike

:Mary :John

Original Data

Reductions

Join(mention sub , tweet sub )

Join(tweet sub , mention sub )

SUB OBJ

:John :Mary

:John :Mike

:Alex :Mary

SUB OBJ

:John :T1

:Alex :T4



Vertical Partitioning Model
Vertical Partitioning [Abadi et al. – VLDB 2009]

• Create property-bound tables consisting of two columns

• Advantages
­ Inspects the corresponding VP tables only
­ Avoids the tuple-header reading overhead of row-stores when stored 
in a column store

• Drawbacks
­ Some partitions can account for a large portion of the entire graph 

­ (i.e. Massive I/O)

Subject
:John
:John
:John
:Mike
:Mike
:Alex
:Alex

Property
mention
mention
tweet
tweet
tweet
mention
tweet

Object
:Mary
:Mike
:T1
:T2
:T3
:Mary
:T4

Triples Table

mention

Subject Object
:John :Mary
:Alex :Mary
:John :Mike

tweet

Subject Object
:John :T1
:Mike :T2
:Mike :T3
:Alex :T4



Proposal
Overview

• Three Phases

1. Property-based Partitioning
2. Partition Reduction
3. Query Processing
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Proposal
Property-Based Partitioning

• SemVP - A relational partitioning schema that extends VP’s
­ Partition RDF datasets based on property
­ Represent row-level semantics for every triple via semantic filters

• Create Bloom filters for every SemVP (subject and object)
­ Used later to compute reduced row-sets for specific query join patterns



Proposal
Partition Reduction

• Identify related properties from the query workload for every 
partition

• Identify join patterns in the query workload

• Compute a reduction using Bloom join between related 
properties based on the join patterns

• Store the result of the reduction as semantic filters



Proposal
Query Processing

• Identify the properties and join patterns in queries 

• Match every property and query join pattern with a SemVP
partition and a semantic filter, respectively

• In case a match is found, a semantic filter (representing the 
reduced set of rows) is read to answer a query instead of 
reading the entire partition for a property.



Challenges

• How to represent row-level semantics (semantic filters)

• How to efficiently compute reductions ?

• How to select semantic filters that minimize network and disk IO ?

• How to evolve based on the query-workload



Semantic Vertical Partitioning (SemVP)

• A relational partitioning schema that extends vertical partitioning 
with row-level semantics

• Consists of 2 columns: Subject, Object

• A Semantic Data Layer (SDATA) structure that stores triple semantics



SDATA

[1]

[1,2]

[1]

Key Count

mention_S_JN_tweet_S 3

mention_O_JN_tweet_S 1

SEMANTIC DATA LAYER

SemVP

Statistics
Bloom

 Filters

Key ID

mention_S_JN_tweet_S 1

mention_O_JN_tweet_S 2
Sem

antic  Filters

Semantic Vertical Partitioning (SemVP)
Example

Dictionary

Key Filter

mention_S [B1]

mention_O [B2]

Subject Object

:John :Mary

:John :Mike

:Alex :Mary

Figure: SemVP representing the mention property



Semantic Vertical Partitioning (SemVP)
Semantic Data Layer

• Semantic Filters
­Used for determining triples that can are read to answer a specific query 
join pattern

• Statistics
­Maintains statistics about the semantic filters

• Bloom Filters
­Used for computing the semantic filters



Property Reduction
Example

SUB OBJ

:John :Mary

:Alex :Mary

:John :Mike

SUB OBJ

:John :T1

:Mike :T2

:Mike :T3

:Alex :T4

:John, 
:Alex :John, 

:Mike, 
:Alex

SELECT ?x ?y  WHERE {
?x  :mention :John .    
?x  :tweet   ?y    . }

x=[:mention_S, :tweet_S]

SUB OBJ

:John :Mary

:Alex :Mary

:John :Mike
BF: tweet_S

BF: mention_S

SUB OBJ

:John :T1

:Alex :T4

BGP
Join

:mention :tweet
SDATA

[2]

[2]

SDATA

[1]

[1]

[1]

Original Partitions

SF (ID:    2) :  tweet_S_JN_mention_S

SF (ID:   1) :  mention_S_JN_tweet_S



Partition Reduction
Example: Property Relatedness

SELECT ?X ?Y ?Z
WHERE
{

?X type      GraduateStudent .
?Z phdFrom ?Y .
?X mscFrom ?Y .

}

type = [ mscFrom ]
phdFrom = [mscFrom ]
mscFrom = [ type, phdFrom]

• Properties are considered related if 
they appear in the same query join 
pattern

• SPARTI utilizes the co-occurrence to 
determine which semantic filters 
should be computed



Evolution

• Evolution relates to when semantic filters are:
­Created – To reduce partitions of newly observed join patterns
­Deleted – To reduce disk space

• The cost of computing additional semantic filters can be inferred 
from the query-workload and the SemVP statistics



Cost Model

• Each SemVP partition maybe associated with hundreds of semantic filters

• A cost-model is needed in order to determine the importance of a semantic 
filter

!"#$#"% = α ( + ß + +∞ (.)

• Where 
­ S : Support (ie, frequency) of a join pattern within a query-workload
­ R : The partition size
­ P : Number of properties that the semantic filter includes
­ α + ß + ∞ = 1 



Experimental Setup
• Computational Framework

­ Apache Spark

• Storage
­ HDFS

• Datasets
­ WatDiv Benchmark + Stress Workload
­ 100 Million,  1 Billion

­ YAGO
­ 200 M

• Systems
­ S2RDF
­ SPARTI
­ Vertical Partitioning
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Results
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Results
HDFS Size
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Results
Load Time
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Results
Execution Time – WatDiv 1B

1.E+02

1.E+03

1.E+04

1.E+05

C1 C2 C3 F1 F2 F3 F4 F5 L1 L2 L3 L4 L5 S1 S2 S3 S4 S5 S6 S7

Ex
ec

. T
im

e 
(m

ill
ise

co
nd

s)

WatDiv Queries - Snowflake (F) , Complex (C) , Linear (L), Star (S)

SPARTI S2RDF VP



Results
Execution Time - YAGO
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Results
Execution – WatDiv Stress Testing Workload
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Conclusion

• We presented SPARTI, a scalable RDF data management system that utilizes a 
relational scheme and provides row- level semantics for RDF data

• The row level semantics, represented as semantic filters, provide SPARTI with a 
mechanism to read a reduced set of rows when answering specific query join-
patterns

• The cost-model for managing semantic filters prioritizes the creation of the 
important semantic filters to compute. 

• The experimental study that compares SPARTI with the state-of-the-art Spark-
based RDF system demonstrates that SPARTI achieves robust performance over 
synthetic and real datasets



Questions ?
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