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Abstract. Cloud-based systems provide a rich platform for managing large-scale
RDF data. However, the distributed nature of these systems introduces several
performance challenges, e.g., disk I/O and network shuffling overhead, espe-
cially for RDF queries that involve multiple join operations. To alleviate these
challenges, this paper studies the effect of several optimization techniques that
enhance the performance of RDF queries. Based on the query workload, reduced
sets of intermediate results (or reductions, for short) that are common for certain
join pattern(s) are computed. Furthermore, these reductions are not computed be-
forehand, but are rather computed only for the frequent join patterns in an online
fashion using Bloom filters. Rather than caching the final results of each query,
we show that caching the reductions allows reusing intermediate results across
multiple queries that share the same join patterns. In addition, we introduce an
efficient solution for RDF queries with unbound properties. Based on a realiza-
tion of the proposed optimizations on top of Spark, extensive experimentation
using two synthetic benchmarks and a real dataset demonstrates how these opti-
mizations lead to an order of magnitude enhancement in terms of preprocessing,
storage, and query performance compared to the state-of-the-art solutions.

Keywords: Intermediate Results · Basic Graph Pattern · Distributed SPARQL
Query Processing

1 Introduction

Processing RDF queries involves multiple scans of the same data, e.g., when certain join
patterns are frequent and are repeated across multiple queries. This calls for workload-
driven mechanisms that cache only the data that is required by the query workload.
Network shuffling overhead also degrades query performance in a distributed environ-
ment. It occurs when the processing nodes exchange data in order to answer queries.
Reducing the network shuffling overhead highly relies on how the data is partitioned
across the nodes.

This paper presents Workload-driven RDF Query Processing (WORQ, for short),
a system that encapsulates several optimizations that significantly enhance the perfor-
mance of RDF queries. In particular, WORQ addresses three main issues: 1) how to
efficiently partition the RDF data in an online fashion, 2) how to reduce the interme-
diate join results of an RDF query in an online fashion, and 3) how to cache reusable
intermediate join results instead of the final results of an RDF query.
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Workload-Driven Partitioning: Data partitioning is common in distributed data
management systems. The RDF data is typically divided into several partitions, and then
is distributed across the cluster machines. The objective of partitioning is to reduce the
query execution time by leveraging parallelism. Data partitioning incurs a preprocessing
overhead as it needs to be performed over the whole data. However, for a real workload,
only a small fraction of the data is accessed (e.g., see [25]). WORQ adopts a workload-
driven approach when partitioning the data. For each query, WORQ identifies each
query triple (i.e., an entry consisting of bound and unbound subject, property, and an
object) as a subquery. Then, WORQ partitions the data triples by the join attribute of
each subquery. The join attribute represents the variable that connects two or more
query triples. The join can be between subjects, properties, objects, or a combination
of the three attributes. WORQ partitions the data only once for every new query join
pattern that is identified.

Join Reductions: Tables are one way of storing RDF data triples. When a single
query involves joins between multiple tables that correspond to different query patterns,
every binary join operation generates intermediate join results (or intermediate results,
for short). The intermediate results represent the data that satisfies the binary join and
eventually contributes to the final result of the query. However, intermediate results may
contain redundant data triples that do not match all the query joins. WORQ minimizes
the intermediate results by precomputing join reductions through Bloom-joins [8, 16].

Caching: To boost query performance, caching can be employed to improve query
response time and increase the throughput of execution. One caching approach is to
cache the results of each query. However, caching the unique query results incurs sig-
nificant memory storage overhead. In contrast, WORQ caches (in main memory) the
join reductions that correspond to the frequent join patterns. These reductions can be
reused by other queries that share the same query patterns.

Queries with Unbound Properties: Some query workloads may have query
triples with unbound (i.e., unspecified) properties. For example, the query triple
:John ?x :Mary queries all data triples that have a subject :John and an object
:Mary, where ?x specifies an unbound property. Answering unbound property queries
is challenging for RDF systems that adopt a specific RDF partitioning scheme. Assum-
ing that the data is vertically partitioned [1, 13] (VP, for short), the data triples are split
into separate files denoted by the property (i.e., predicate) name, where each file con-
tains the subject and object representing the property. Using VP, answering unbound
property is challenging because all property files need to be accessed or an index needs
to be built on top of each file. In contrast, WORQ utilizes Bloom filters as indexes to
efficiently answer unbound property queries.

WORQ is implemented as part of the Knowledge Cubes (KC) proposal [17]. The
source code 3 for a Spark-based implementation of WORQ is publicly available for
download. Our experimental setup includes two synthetic benchmarks, namely Wat-
Div [4] and LUBM [10], and a real dataset, namely YAGO2s [7, 12]. The purpose of
the experiments is to demonstrate three aspects of WORQ : 1) the preprocessing time
required given an RDF dataset, 2) the storage overhead incurred to create the RDF
database, and 3) the query processing time when answering RDF queries with respect

3 http://github.com/amgadmadkour/knowledgecubes
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to partitioning and caching. The results illustrate how the presented optimizations pro-
vide at least an order of magnitude better results on the three aforementioned aspects
when compared to the Hadoop-based state-of-the-art solution.

The contributions of this paper can be summarized as follows:

– We present workload-driven partitioning of RDF triples that can join together in
order to minimize the network shuffling overhead based on the query workload.

– We present the use of Bloom filters for computing RDF join reductions online.
– Rather than caching the results of an RDF query, we show that caching the RDF join

reductions can boost the query performance while keeping the cache size minimal.
– We study an efficient technique for answering RDF queries with unbound proper-

ties using Bloom filters.

The rest of this paper proceeds as follows. Section 2 presents the online reduction
of RDF data. Section 3 presents workload-driven partitioning in WORQ . Section 4
presents how WORQ answers unbound-property queries. Section 5 presents the exper-
iments performed over the WatDiv, LUBM, and YAGO datasets. Section 6 presents the
related work. Finally, section 7 presents concluding remarks.

2 Online Reduction of RDF Data

WORQ employs Bloom-join [8, 16] to compute the reductions between vertical parti-
tions. Many cloud-based systems [13] use vertical partitioning (VP) [1] including the
state-of-the-art [27]. VPs can be realized over any relational database system and stored
in cloud data sources (e.g. Parquet, ORC2). Bloom-join determines if an entry in one
partition qualifies a join condition with another partition. The reductions can be com-
puted in an online fashion using Bloom-join instead of precomputing all possible re-
ductions in an offline fashion (i.e., during the preprocessing phase [27]). Bloom-join
utilizes a probabilistic data structure, termed Bloom filter [8]. A Bloom filter does not
physically store items, but rather hashes the input against different hash functions. The
main functionality of a Bloom filter is to determine the existence of an item. Bloom fil-
ters can have false-positives, but no false-negatives. Bloom filters are fast to create, fast
to probe, and small to store. Also, the false-positives introduce a small percentage of
irrelevant rows that eventually are not joined in a Bloom-join. During the evaluation of
a join, WORQ uses Bloom filters to probe the join attributes of the query join-patterns.
The Bloom filters representing the join attributes filter the rows in both partitions in-
volved in the join, and the results are materialized as a reduction for a specific join
pattern, or reductions, for short.

Figure 1 gives an example of using Bloom filters to compute a join reduction.
The query has a BGP join between :mention and :tweet on the Subject attribute.
WORQ uses the Bloom filter of BloomFiltersub(:tweet) to compute a reduction
for the :mention property on the subject column. :tweet’s Bloom filter consists
of the elements :John, :Mike, and :Alex. Each element in the subject column of
the :mention partition is probed against the :tweet Bloom filter. The reduction
for :mention represents all the rows that qualify a join between the vertical parti-
tions :mention and :tweet on the subject attribute. Figure 1 illustrates the entries
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Subject Object

:John :T1
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:Alex :T4
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:John 
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SELECT ?x ?y  
WHERE

?x  :mention :Mary .    
?x  :tweet ?y    .

joinx(:mentionsub,:tweetsub)

SUB OBJ

:John :Mary

:John :Mike
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:Alex :T4

BGP
Join

mention tweet

Reduced Triples

Probe

Probe

Subject Object

:John :Mary

:John :Mike
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:Mary :John

Selection(:Mary)

?x ?y

:John :T1
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Result

JoinSPARQL Query

Determine join patterns

mention tweet

Fig. 1. Evaluating a SPARQL query using Bloom-join between :mention and :tweet

that qualify the join between :mention and :tweet, where the vertical partition of
:mention is reduced from five entries to only three qualifying entries. Similarly, the
vertical partition of :tweet is reduced from four entries to only two qualifying entries.
The reductions for both properties are cached by WORQ in order to be reused by other
queries that share the same join patterns. In other words, the :mention reduction can
be reused by the :mention property if it joins with :tweet on the subject attribute.
Also, the :tweet reduction can be reused by the :tweet property if :tweet joins
with the :mention property on the subject attribute.

WORQ does not apply selection (i.e., filtering) operations on the original data triples
(i.e., VP). Instead, selections are applied on the reductions after the reductions are com-
puted. For example, the reduction for :mention contains a selection on the object,
namely :Mary. However, the selection has been delayed until the reductions have been
computed from the original data triples. The advantage of delaying the selection is that
the reductions can be reused by other queries that share the same join patterns. How-
ever, if selections are pushed early on the original data triples, then the reductions will
not be representative of the join operation between the query triples. Finally, the re-
sulting reductions (including the ones that have been filtered) are joined together based
on the join attribute indicated by the query triples. WORQ does not require a specific
join algorithm to be used. Distributed join algorithms, e.g., broadcast hash join or sort-
merge join that are employed by distributed computational frameworks, e.g., Spark, can
be used [3]. Figure 1 illustrates the final result of the query after joining both the query
triples representing :mention (after the selection) and :tweet properties, where two
entries qualify the join result.

N-ary Join Reductions

WORQ computes the reductions online instead of pre-computing the reductions of-
fline [27]. In addition, WORQ computes the reductions between all the possible (n-ary)
query-triples instead of computing the reductions in binary form [27].
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SELECT ?x ?y ?z ?w 
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Fig. 2. N-ary join between the reductions of three query triples involving the :mention, :tweet,
and :like VPs

Figure 2 illustrates a SPARQL query with three query-triples that share the same
join attribute (i.e., variable ?x). When the join is computed between the :mention,
:tweet, and :like VPs, only the data triples that are common amongst the three
VPs will qualify as a result. WORQ utilizes Bloom join to reduce the number of data
triples in every VP involved in the join operation, and hence reduces the intermediate
results between the three join operations. WORQ uses the Bloom filters representing
the join columns of the three query triples (the subject Bloom filters, in this instance) to
reduce the VP entries to the ones that would qualify the join operation. For example, the
:mention VP is reduced from five data triples to two triples that have :John as the
subject because :John is the only resource that qualifies the :tweet Bloom filter on
the subject and the :like Bloom filter on the subject. The same applies to the :tweet
VP, where :John is the only resource that qualifies the :mention Bloom filter on the
subject and the :like Bloom filter on the subject. Finally, WORQ uses the computed
reductions instead of the VPs to evaluate the query. The result of the query includes two
rows corresponding to the only resource common across the three property-VPs. The
computed reductions are cached to be reused by any other query that contains a join
between the three properties on the subject attribute.

Caching of Reductions

Rather than caching portions of the original RDF data or the final query results,
WORQ caches (in main-memory) the reductions that correspond to the join patterns
that are discovered during query processing. Caching intermediate results (i.e., reduc-
tions) is suitable in situations where the query workload consists of a high number of
unique queries that share similar patterns. In contrast, caching the results is suitable in
situations where the query workload consists of a high number of frequent queries that
do not necessarily share the same query pattern. WORQ is suitable for the former case
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where many unique queries can utilize the reductions without the need to cache all their
results. WORQ does not assume a specific cache-eviction policy, i.e., any eviction pol-
icy. WORQ employs least recently used (LRU) strategy where evicted reductions can
be saved to disk and be reused if the pattern they represent reoccurs. Also, the advan-
tage of saving to disk is that filtering will not be performed again. The cache-eviction
policy is beyond the scope of this paper.

3 Workload-Driven Partitioning

Rather than relying on a predefined partitioning criteria (e.g., using the subject only),
WORQ partitions the RDF data according to the join patterns in the queries received
so far. WORQ aims at placing the partitions of the reductions that share the same join
attribute on the same machine, which minimizes the shuffling overhead, and more im-
portantly, reduces the query response time. Instead of partitioning the VP, WORQ parti-
tions the reduction rows across the machines. After a query is parsed, WORQ identifies
the join attributes in the query. Based on the join attributes, the reductions that need to
be partitioned are determined. Reduction partitioning is performed only once, and the
resulting partitions are reused by any query that has the join pattern that corresponds to
the reduction.

SELECT ?x ?y ?w
WHERE
?x  :tweet :T1 .
?x  :mention ?y  .
?y  :like ?w  .

Reductions RID

R1(tweet sub ,	 mention sub ) R1

R2(mention sub,	tweet sub ) R2

R3(like sub , 	mention obj ) R3

SUB OBJ

:John :T1

:Alex :T4

Reduction 1 (R1)

SUB OBJ

:John :Mary

:John :Mike

:Alex :Mary

Reduction 2 (R2)

SUB OBJ

:John :Alex

Reduction 3 (R3)

Machine 1 [Hash: John]

Machine 2 [Hash: Alex]

:John   :T1

:Alex   :T4

:John.  :Alex

:John.  :Mary
:John.  :Mike

Partitioning

R1

R1

R3

R2

Possible Reductions

Reductions

:Alex.  :Mary R2

Fig. 3. Workflow for workload-driven partitioning

Figure 3 illustrates a set of query join patterns and their corresponding reductions.
The join pattern representing the :tweet property uses the reduction denoted by R1
on the subject. The join pattern representing the :like property uses the reduction de-
noted by R3 on the subject as well. WORQ partitions the rows of every reduction based
on the join attribute (i.e., the subject or object). In Figure 3, the reductions representing
R1,R2,R3 are partitioned using the subject (as the reductions are based on the sub-
ject attribute). The reduction rows are hash-distributed across the machines using the
join attribute (i.e., subject or object). This partitioning scheme guarantees that all the
data triples that are related to the join attributes of the query are co-located on the same
machine, and thus allowing the reductions to be computed locally.
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4 Queries with Unbound Properties

The performance of unbound-property queries depends on the adopted RDF partition-
ing scheme. If the data is vertically partitioned, answering unbound-property queries
becomes challenging because all the VPs need to be iterated. A straightforward ap-
proach to query the unbound properties in a distributed setting is to store the RDF data
triples in a single file (i.e., triples file). Distributed file systems, e.g., HDFS, split the
files into a set of blocks and distribute the blocks across machines. In this case, RDF
query processors can evaluate unbound-property RDF queries in parallel [26], where
each machine processes a set of blocks. We refer to this baseline approach as RDF-
Table. We implement this baseline for evaluation purposes.

WORQ utilizes Bloom filters as cheap indexes to efficiently answer unbound-
property queries over data that has been vertically partitioned. WORQ performs two
steps to determine the matching properties. The first step is called the identification
step, where a set of candidate properties are identified. The second step is called the
verification step, where the candidate properties are verified to eliminate the possibility
of false-positives. Given a query, WORQ uses the existing Bloom filters to discover
the unbound property. WORQ relies on the bound attributes (i.e., subject and object) to
discover the matching properties.

SELECT ?x
WHERE {
:Mary        ?x      ?y . }

:John 
:Alex
:Sally
:Mary

:John 
:Mike 
:Alex

BloomFilter sub (:tweet)

BloomFilter sub (:mention)

:John 
:Sally

BloomFilter sub (:like)

[MATCH]

[DOES NOT MATCH]

[FALSE POSITIVE MATCH]

Probe all exiting Bloom Filters 

IDENTIFICATION VERIFICATION

:mention :like

Filter sub 

(:Mary)
Filter sub 

(:Mary)

1 Entry 0 Entry

?x

:mention

Result

Fig. 4. The identification and verification steps to answer unbound-property queries

Figure 4 illustrates the identification step for answering unbound-property queries.
First, the unbound and bound attributes are identified. Then, the bound attributes are
used to probe the Bloom filters to determine if the bound values exist for a specific prop-
erty. If a value exists, the corresponding property is added as a candidate for answering
the query. For instance, in Figure 4, :Mary exists in the :mention property, and is
found using a MATCH in the corresponding Bloom filter. However, :Mary does not
exist in the :tweet property, and hence the Bloom filter returns DOES NOT MATCH.
Although :Mary does not exist in :like, the Bloom filter returns a MATCH, which
is a false positive.
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Given that Bloom filters can incur false positives, a verification step is needed to
ensure the correctness of query evaluation. WORQ verifies the candidate properties
by issuing a filter based on the bound attributes with the value indicated in the query
triple (i.e., the value that made the candidate property match). If the result-set includes
at least one match, then WORQ determines that the candidate property was identified
correctly. Otherwise, the candidate property is discarded. Disqualifying data will not
happen frequently based on the false-positive rate of the constructed Bloom filters.

5 Experiments

WORQ is compared against S2RDF [27], a Spark-based system that runs over Hadoop.
S2RDF [27] proposes an extension to VP, namely ExtVP, where reductions of entries
are computed for every vertical partition. S2RDF utilizes semi-join reductions [6] to re-
duce the number of rows in a partition. The reductions represent all RDF query combi-
nations that appear in SPARQL queries (i.e., Subject-Subject, Subject-Object, Object-
Subject, Object-Object). However, S2RDF exhibits a substantial preprocessing over-
head. Semi-joins are expensive to compute, and generate large network-traffic. In addi-
tion, S2RDF generates a large number of files to represent the reductions of the original
data. S2RDF translates SPARQL queries to SQL and runs them on Spark SQL. S2RDF
has outperformed Hadoop-based systems such as H2RDF+, Sempala, PigSPARQL,
SHARD, and other systems such as Virtuoso, where S2RDF has achieved (on average)
the best query execution performance [27]. Accordingly, this paper presents a compar-
ison with S2RDF only as S2RDF represents the state-of-the-art Hadoop-based RDF
query processing system. WORQ is implemented over Spark (v2.1) where it utilizes
Spark DataFrames to represent the reductions. WORQ does not translate the query to
SQL. Instead, WORQ implements joins as a series of Spark DataFrame joins. To guar-
antee a fair setup, all Spark-related parameters are unified for both WORQ and S2RDF.
The data for both systems is stored using Parquet 4 columnar-store format. Vertical
partitioning has been implemented as a baseline.

5.1 Experimental Setup

The experimental setup datasets and queries proposed by Abdelaziz et al. [2] are used.
Our experiments are conducted using a real dataset (YAGO2s [7, 12]) as well as two
synthetic benchmarks (WatDiv [4] and LUBM [10]) that provide widely-adopted query
workload generators:
1. WatDiv provides a stress-test query workload that allows generating several queries
per-pattern. One Billion triples have been generated to demonstrate the query execu-
tion performance and preprocessing performance (i.e., the number of files generated,
disk space utilization, and loading time). A pre-generated workload provided by Wat-
Div [4] contains 5000 queries that cover 100 diverse SPARQL patterns, each having
50 variations. A variation represents different bound values for the same query pattern.
The variations allow measuring the performance of specific patterns under different

4 parquet.apache.org

parquet.apache.org
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selectivities. For the unbound-property queries, we use the query workload provided
by Alvarez-Garcia et al. [5] that represents 500 queries covering three combinations
namely, unbound subject with bound object, unbound object with bound subject, and
bound subject and object.
2. LUBM provides a query-workload generator, where 1000 queries are generated. Un-
like WatDiv, LUBM does not specify the number of patterns.
3. YAGO2s consists of 245 million real RDF triples. YAGO2s benchmark queries are
used to compare the query execution time [19, 27]. There is no publicly available real
query workload for YAGO. Generating synthetic queries for YAGO is similar to what
WatDiv and LUBM provide while they guarantee generating all possible query shapes.

Our experiments are conducted using an HP DL360G9 cluster with Intel Xeon E5-
2660 realized over 5 nodes. The cluster uses Cloudera 5.9 consisting of Spark 2 as a
computational framework and Hadoop HDFS as a distributed file-system. Each node
consists of 32 GB of RAM, and 52 cores. The total HDFS size is 1 Terabyte. The exper-
iments measure various aspects of WORQ including (1) the number of generated files,
(2) the filesystem size, (3) the loading time, (4) the workload query execution perfor-
mance, (5) the overhead of caching results instead of caching reductions, and (6) the
execution performance of unbound properties queries. The data for the 3 benchmarks is
loaded into memory before execution.

5.2 Experimental Results
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Fig. 5. Disk space utilization
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Fig. 6. Preprocessing time

Preprocessing Performance Figure 5 gives the disk storage overhead incurred by the
three systems over the LUBM, WatDiv, and YAGO2s datasets. VP introduces minimal
space overhead across all three systems. The reason is that VP only needs to partition
the original triple file based on the property name. Storage in WORQ is composed of
the VP and the Bloom filters. S2RDF precomputes all the possible reductions for binary
joins (O(n2), where n is the number of VPs), and stores them on disk along with the
original data. Thus, S2RDF introduces the highest disk storage overhead.

Figure 6 gives the preprocessing time for all three systems over the LUBM, WatDiv,
and YAGO2s datasets. VP has the smallest loading time due to its simplicity, followed
by WORQ, and then S2RDF. The majority of time spent by S2RDF in the preprocessing
time involves creating the proposed partitions called ExtVP. The computation involves
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performing semi-joins between binary partitions in a distributed fashion causing high
network shuffling overhead. WORQ incurs a minor overhead compared to VP due to
the computation of the Bloom filters.

Query Workload Awareness For the remaining experiments, the results of VP are
omitted due to its low performance. The following experiments demonstrate the query
performance of both WORQ and S2RDF across different aspects, e.g., the total execu-
tion time, the mean execution time per query pattern, and the mean execution time given
the number of join-triples in a query. WatDiv and LUBM are used due to the availability
of workload generators while YAGO2s is omitted as a real query workload is unavail-
able. However, a set of benchmark queries [27] are used to measure the performance
against the YAGO2s dataset. In S2RDF, the partitioning is done for every query and
takes place while the queries are being evaluated. S2RDF reports the overall execution
time which includes both the partitioning and the actual execution time. WORQ follows
the same procedure when reporting the overall execution time.
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Fig. 8. Total query execution time

Figure 7 and Figure 8 give the mean and total execution times based on executing
5000 queries over WatDiv (1 Billion triples) and 1000 queries over LUBM (1 Billion
triples). WORQ is consistently better across the two benchmarks. The difference in
performance is attributed to the combination of efficient partitioning and the caching of
reduction employed by WORQ as illustrated in later experiments. WORQ reduces the
relations to be joined by computing light-weight reductions that can fully represent the
original data in answering the RDF queries. Rather than scanning the original (large)
data for each query, the light-weight reductions are used instead.

The difference in performance between LUBM and WatDiv is attributed to the char-
acteristics of both benchmarks in terms of the number of properties and the query work-
load representing each dataset. LUBM consists of 18 properties while WatDiv consists
of 86 properties. The 1 Billion triples for LUBM and WatDiv are distributed across 18
and 86 properties, respectively. WORQ performs well with the increase in the number
of properties. In real datasets, e.g., YAGO2s [7, 12], the number of properties are in
hundreds, making WORQ more appropriate to use than S2RDF.

Figure 9 gives a break-down of the query execution of 5000 queries over WatDiv
(1 Billion triples) per query pattern. The x-axis represents the query numbers and the
y-axis represents the execution time. A query pattern represents a set of one or more
query triples (i.e., BGP triples) that vary based on the bound and unbound attributes,
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e.g., one pattern can have two query triples joined by the subject attribute while another
pattern would be based on two query triples joined on the object attribute. For every
pattern, the mean execution time is recorded for the two systems. Figure 9 shows that
WORQ executes each pattern nearly an order of magnitude faster than S2RDF.

Figure 10 gives a break-down of executing 1000 queries over LUBM (1 Billion
triples per query pattern). Similar to WatDiv, the mean execution time is recorded per
pattern for the two systems. The number of patterns included in the LUBM query work-
load is 20. Figure 10 shows that all the patterns are executed faster by WORQ than
S2RDF.
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Fig. 11. Execution timeline for two query
pattern over WatDiv 1 Billion dataset
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Fig. 12. Execution timeline for two query
pattern over LUBM 1 Billion dataset

Figure 11 gives the performance when executing only two patterns over the WatDiv
benchmark. The x-axis represents the timeline, where we execute one query pattern
first, and then execute another pattern. There are two major spikes in the performance
of WORQ that reflect the first time each query pattern was executed. For each pattern,
a high query execution overhead is exhibited at the beginning, followed by near-linear
performance for the rest of the queries that share the same join pattern.

Figure 12 repeats the same experiment for two patterns over the LUBM benchmark.
Similar to Figure 11, the first time a join pattern is executed, a spike in execution time
is exhibited followed by a near-linear performance for the remaining queries. Unlike
WatDiv, the computation of the query patterns for the first time over LUBM consumes
more time than S2RDF. However, the overall execution time of WORQ outperforms
S2RDF as Figure 8 illustrates.

We analyze the effect of query triples on the query execution. The WatDiv query
workload contains a set of 100 representative patterns and is used for the analysis.
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Fig. 14. Mean execution time for joins per
pattern over WatDiv 1 Billion

LUBM benchmark is discarded for this experiment as WatDiv provides a workload
with more diverse shapes than LUBM.

Figure 13 gives a break-down of executing 5000 queries over WatDiv (1 Billion
triples) given the number of triples per query. From the figure, the number of triples
affects the overall query performance, where the query execution time increases as more
triples are processed.

Figure 14 gives a break-down of the mean query execution time for 5000 queries
over WatDiv (1 Billion triples) based on the number of joins between query triples.
This is different from the number of query triples experiment, where the number of
joins experiment measures the maximum number of joins identified per query, e.g., a
query may contain five query triples, but contains a join between two query triples only.
To create the experimental setup, every query is first placed in a join group based on
the maximum number of joins that it has. Then, the mean execution time is measured
for queries within a join group. WORQ achieves nearly an order of magnitude better
performance than S2RDF.
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workload-driven and static partitioning
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Figure 15 gives a break-down of the mean execution time using workload-driven
partitioning and static partitioning of WORQ to illustrate the effect of using the
workload-driven component only. Static partitioning is based on subject. In workload-
driven partitioning, every query is partitioned based on the join patterns of the query.
In contrast, static partitioning is performed based on a pre-specified criteria, e.g., parti-
tioning by subject. Static partitioning was performed on the subject column. Figure 15
demonstrates that workload-driven partitioning contributes positively towards the over-
all query execution performance over the two datasets. The partitioning time is depen-
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dent on where data is originally stored on the cluster and generally incurs a minor cost.
The query evaluation time given where data is partitioned dominates the execution time.

Figure 16 gives a break-down of the query execution over 14 benchmark YAGO2s
queries [27]. The x-axis represents the query numbers and the y-axis represents the
execution time. The queries were designed to take into consideration various query
shapes, e.g., star-shaped, and resources selectivities. Each query was executed 5 times
using different selective predicates and the average time was reported. For every query,
the corresponding reductions for both WORQ and S2RDF were loaded into memory in
advance. WORQ achieves better query execution performance over all queries.
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Caching of Reductions Figure 17 demonstrates the effect of caching on the query per-
formance. Cold queries are those with patterns that have not been executed before, i.e.,
that have no corresponding reductions in the cache. Warm queries are those that share
the same pattern as queries that executed before, i.e., that have corresponding reductions
in the cache. The figure gives the mean execution time of 5000 queries from the Wat-
Div benchmark and 1000 queries from the LUBM benchmark. The figure demonstrate
how utilizing cached patterns (i.e., reductions) achieves better query execution perfor-
mance. The reason LUBM cold cache is worse is because while both datasets are of the
same overall size (1B triples), one contains 18 files/predicates (LUBM) in contrast to
87 files/predicates in WatDiv so the filtering time is higher for LUBM queries. Also,
WORQ pays a price only once when a query pattern is seen for the first time. However,
the cold-start cost is minor.

Figure 18 gives a break-down of the memory usage over 5000 unique queries cov-
ering 100 patterns. Using a workload of 5000 unique queries, the figure demonstrates
how the size of the cached queries grows over time and surpasses the size of cached re-
ductions. The memory usage for caching the query results can reach more than 10 GB
over 5000 queries while caching reductions exhibits a slower memory usage curve. The
conclusion is that caching the reductions is more suitable than caching the query results
in situations where there are many unique queries that share common patterns.

Performance of Unbound-Property Queries Schatzle et al. [27] do not evaluate the
performance of S2RDF for unbound-property queries as it is out of the scope of their
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current work. In addition, S2RDF adopts a VP structure to answer queries, leading
to degraded query performance over unbound-property queries. Therefore, we use the
RDF-Table approach described in section 4 as a baseline. We evaluate three query pat-
terns based on the attributes of an RDF triple, namely a bound subject and object, a
bound subject, and a bound object.

Table 1. Unbound property results - (BSO) Bound Subject and Object, (BS) Bound Subject, (BO)
Bound Object

System BSO-Mean BSO-Sum BS-Mean BS-Sum BO-Mean BO-Sum
WORQ 1.25 ms 10.49 min 4.18 ms 34.84 min 3.52 ms 29.34 min

RDF-Table 5.3 ms 44.44 min 3.80 ms 31.67 min 4.35 ms 36.26 min

Table 1 gives the result of processing 500 queries with bound subject and object
(BSO), bound subject (BS), and bound object (BO) over WatDiv (1 Billion triples). For
bound subject and object (BSO), the mean execution time per query is nearly five times
better than the baseline. This is attributed to the Bloom filter usage, where the number of
false-positives is reduced by evaluating the properties against two bound values instead
of one bound value, e.g., queries with bound subject only or a bound object only. For
bound subject (BS), the mean execution time of WORQ is comparable to that of RDF-
Table. This performance is due to two main reasons. The first is the efficiency of RDF-
Table within Spark as RDF-Table performs predicate pushdown filtering in parallel and
the result is aggregated back to the driver (i.e., master node). The second is that the
data of the RDF-Table is sorted by the subject, allowing the predicate-pushdown to
work efficiently. For bound object, the mean execution time is also comparable to that
of RDF-Table. The overall execution time of WORQ is better than RDF-Table. The
reason for the better result is attributed to the lack of sorting on the object column
for the RDF dataset. This gives WORQ performance advantage when executing bound
object queries.

6 Related Work

Graph-based partitioning is an NP-complete problem [14], and hence hash partitioning
heuristics [21, 31] are employed instead of graph-based partitioning in order to parti-
tion RDF data efficiently. However, sophisticated partitioning techniques [11,15,22,28]
cannot guarantee that no data will be shuffled when processing complex queries with
multiple joins. Several techniques [23, 29] utilize the query workload to enhance the
partitioning of RDF data. In addition, one study [4] demonstrates the need to continu-
ously adapt to workloads in order to guarantee consistent performance. Characteristic
sets [18] capture the set of properties that occur together for a given subject. How-
ever, characteristic sets are data-driven and are tied to star-shaped queries only. Castilo
et al. [9] perform evaluation of SPARQL queries using (offline) materialized results
coined RDFMatView indexes. In contrast to materialized views, WORQ does not ma-
terialize results but instead identifies reductions that can be reused across queries that
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share the same join patterns. H2RDF+ [20] provides a result-based workload-aware
RDF caching engine that manages to dynamically index frequent workload subgraphs
in real time. However, caching the final results of RDF queries incurs significant storage
overhead and cannot generalize to a broader query workloads. Yang et al. [30] propose
caching the intermediate results of basic graph patterns in SPARQL queries. However,
the proposed approach is tied to the join orders that would result in different interme-
diate results. Alvarez-Garcia et al. [5] introduce a compressed index called k2-triples
for answering unbound-property queries. However, the proposed index is not applica-
ble in a distributed setting. Ravindra et al. [24] uses a non-relational algebra based on a
TripleGroup data model to answer unbound-property queries.

7 Concluding Remarks

This paper presents several optimizations for RDF query processing over vertically par-
titioned triples. First, we present how to use Bloom join to compute reduced sets of in-
termediate results (or reductions, for short) that are common for certain join pattern(s)
in an online fashion. Second, we study the effect of caching these reductions instead of
caching the final results of each query. Third, we present how to partition the RDF data
triples using the join attributes of the query instead of using a predefined partitioning
criteria. Fourth, we present how to efficiently answer queries with unbound properties
using Bloom filters. Extensive experimentation using the WatDiv, LUBM, and YAGO2s
demonstrate how a realization of these optimizations can lead to an order of magnitude
enhancement in terms of preprocessing time, storage, and query performance. Bloom
filters/join is one case study. N-ary filtering can utilize any set membership structure
(e.g., Bloom, Cuckoo, Roaring Bitmaps) so long as we can add and check elements
in a set. The novelty is in how membership structures (e.g., Bloom Filter) are used
to filter data and answer unbound property queries efficiently in a distributed setting.
For future work, we will investigate further query processing enhancements including
load-balanced partitioning of reductions, generalized filtering (exact vs. approximate
structures), and spatio-temporal RDF filtering.
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